
Petri Net Based Control of a Modular Production System

Gašper Mušič, Drago Matko
University of Ljubljana

Faculty of Electrical Engineering
Tržaška 25, SI-1000 Ljubljana, Slovenia

gasper.music@fe.uni-lj.si

Abstract— A systematic approach to design of sequential

control is presented. It is illustrated by a case study of a

two level hierarchical and distributed control design for

a laboratory scale modular production system. Our first

goal is to show how Petri net models can be used as a

tool for sequential control specification that enables sys-

tematic development and analysis of specification model.

Secondly, we show how the same specification model can

be used as an input data for the design of the second, co-

ordination level employing supervisory control concepts.

Finally, an implementation method is presented, which

enables Petri net supervisor to be separated from the low

level process model and implemented in a distributed

environment.

I. INTRODUCTION

Sequential or binary control is the predominant type
of control in a large number of automated manufactur-
ing systems. Specifications where a proper operation
sequence is of a significant importance are typical for
this kind of systems. In such cases, designers are mostly
interested in the discrete behaviour of the process that
can be described by discrete states and discrete events.
This type of a system is characterised as a discrete event
dynamic system.

Discrete event systems and related control issues
gained a large attention within the research community
in the past few years. Many successful applications of
developed theoretical tools, such as Petri nets [8], are
reported in modelling, design and management of var-
ious types of systems.

Much work has been devoted to the supervisory con-
trol introduced by Ramadge and Wonham [11]. Their
work is based on automata and formal languages. Sev-
eral supervisory control approaches based on Petri net
models have also been developed in the last years. The
most of research has been initiated by the academy and
not by practical needs. The majority of related papers
is therefore strongly theoretical and does not pay much
attention to the possible implementation.

In this paper we combine the Petri net modelling
framework and supervisory control concept in a sequen-
tial control case study that was performed by standard
industrial equipment. This equipment consists of pro-
grammable logic controllers interconnected by a com-
munication network and corresponding programming
software. The main elements of the presented design
approach are summarised in the following three sec-
tions. Section II briefly presents Petri nets and how
they are used as a control specification tool. Supervi-
sory control approach to design of a coordination layer
is presented in Section III. Implementation issues are
discussed in Section IV. Finally, the case study that
combines presented topics is described in Section V.

II. PETRI NETS AND SEQUENTIAL

CONTROL

As a large number of manufacturing systems is pre-
dominantly discrete the design of corresponding con-
trol actions requires a discrete event view of the sys-
tem. Various discrete event modelling techniques can
be used to obtain a model of a plant and a controller.

Petri nets as a tool for modelling and specification
of manufacturing systems are described in a number
of sources, such as [1], [8], [10]. A Petri net can
be described as a bipartite graph consisting of two
types of nodes, places and transitions. Nodes are in-
terconnected by directed arcs. State of the system
is denoted by distribution of tokens (called marking)
over the places. Formally, a Petri net is a five-tuple
PN = (P, T, F,W,m0), where
P = {p1, p2, . . . , pk}, k > 0 is a finite set of places,
T = {t1, t2, . . . , tl}, l > 0 is a finite set of transitions
(with P ∪ T 6= ∅ and P ∩ T = ∅),
F ⊆ (P × T) ∪ (T × P) is a finite set of arcs,
W : F → {1, 2, . . .} is a weight function,
m : P → {0, 1, 2, . . .} is a marking, m0 is the initial

marking.
For the purpose of logical modelling required in se-

quential control specification and synthesis we use the
class of ordinary Petri nets. This means all the arc
weights are equal to one and no time is involved in the
firing of transitions. The switching rule of an ordinary
Petri net is given as follows: i) a transition is enabled
if each of the input places of this transition contains at
least one token, ii) an enabled transition may or may
not fire, which depends on an additional interpretation,
iii) a firing of a transition is immediate (includes no de-
lay) and removes a token from each of the input places
of the transition and adds a token to each of the output
places of the transition.

A Petri net is pure, if it does not contain self loops,
i.e. ∀pi ∈ P, ∀tj ∈ T, (pi, tj) ∈ F ⇒ (tj , pi) /∈ F . For
such a Petri net the connections among nodes in the net
can be uniquely described by an incidence matrix D.
For an ordinary Petri net an element of the incidence
matrix is defined as

dij =

1, if (tj , pi) ∈ F
−1, if (pi, tj) ∈ F
0, otherwise

(1)

For the purpose of simulation and possible implemen-
tation by industrial controllers, the input/output inter-
pretation can be added to resulting models.

Several properties of Petri net models have been de-
fined and investigated by different authors. For the

purpose of modelling of industrial processes the most
important properties are liveness, boundedness (safe-
ness) and reversibility. Definition and meaning of these
properties can be found in [8], [10].

One of important related questions is how to derive
an appropriate Petri net model. Different Petri net
modelling approaches are described in [5], [14]. In our
case Petri nets are primarily used for modelling a de-
sired behaviour of the system. We start with a simple
model that is refined in a top-down manner until the
implementation level is reached. Developed model then
serves as a specification of the required state transition
structure in the control logic that would, when applied
to the system under consideration, result in the desired
behaviour.

Even if the Petri net model does not include all the
details about controller input/output behaviour, it is
advantageous to build such a model first. This enables a
clear separation between state transition structure and
implementation details. Above that it yields a possibil-
ity to analyse certain properties such as safeness, which
is required in order for control logic to behave properly.
In this way the designer is forced to focus on building
a proper state transition structure, which is then used
as a base of the sequential control logic.

Other modelling and specification approaches, e. g.
finite automata, could be used to perform this task.
As we require the Petri net models are bounded, or
even safe in most cases, the descriptive power of such
models is the same as that of a finite automaton. The
main advantage of the Petri net approach is that the
representation of the state of the system is distributed
over places of the net. Several states can be therefore
represented by a relatively small number of places. This
enables a compact representation of concurrency and
synchronisation, which makes Petri net models easy to
understand.

III. COORDINATION AND SUPERVISORY

CONTROL

Manufacturing systems are commonly build in a dis-
tributed manner. Resulting subsystems are indepen-
dent to certain extent but also have to coordinate their
actions with their environment. Coordination can in-
clude several sorts of activity, e.g. coordination in a
sense of minimisation of a system production cycle time
or maximisation of its throughput. In this paper we
consider the coordination in its simplest sense, i.e. pre-
vention of collisions and similar situations in order to
maintain a proper system operation.

The coordination layer acting in this sense can be
designed by the use of the supervisory control theory
[11]. The supervisory control concept deals with dis-
crete event systems whose behaviour is restricted by an
external controller called supervisor.

Supervisory control (Fig. 1) does not uniquely deter-
mine the next event to occur in a system; it merely
monitors events generated by the system and deter-
mines the set of allowable events that can occur at any
instant (Γ in Fig. 1). In this way the supervisor actually
intervenes only in cases when some undesired process

S

P r o c e s s

S u p e r v i s o r

G
L o c a l
c o n t r o l l e r

S p r

S c o

S p r È S c o

L o c a l l y c o n t r o l l e d p r o c e s s
G

È

Fig. 1. Supervisory control.

behaviour is about to take place. The control effect is
restricted to prevention of certain events in the system
that are classified as controllable events.

The supervisor is computed based on the ’open-loop’
system model that can be given as a finite automaton
or a Petri net. The open-loop model (G in Fig. 1) rep-
resents a locally controlled process, it therefore includes
the process and the local controller. Supervisory con-
trol approaches based on Petri net models are described
in [3], [6], [7], [12]. Models of the desired behaviour of
the locally controlled system are used as an open-loop
model for the design of the supervisor.

In this way the same Petri net models as for control
specification can be used to design a second control
level that maintains additional system requirements,
e.g. performs a simple coordination among subsystems.
The set of derived Petri net models of separate subsys-
tems is considered as a single open-loop process model
whose behaviour should be restricted by a supervisor.
Coordination requirements are translated into restric-
tions on the marking of the open-loop Petri net model.
When the supervisor is designed by the method of place
invariants [7], [12], the resulting supervisor consists of
several additional places that are connected to existing
open-loop Petri net model.

The method of place invariants is particularly inter-
esting, because the resulting supervisory mechanism is
computed very easily. The net marking m is denoted by
a column vector mp, whose length equals the number of
places P in the net and whose elements are µi = m(pi).
A vector mp represents the state of an open-loop model
or a plant. By the method of place invariants it is pos-
sible to enforce a set of nc constraints on the plant state
mp. Constraints are written in the form

k
∑

i=1

liµi ≤ β (2)

or grouped together as

Lmp ≤ b (3)

The inequality (3) is read with respect to each element
on the corresponding left and right hand sides. It is
shown in [12] that if the initial marking does not violate

the given set of constraints, (3) can be enforced by a
supervisor with the incidence matrix

Dc = −LDp (4)

where Dp is the incidence matrix (1) of the plant. The
initial marking of the supervisor is computed by

mc0
= b − Lmp0

(5)

where mp0
is the initial marking vector of the plant.

The supervisor consists of nc places that are linked to
the existing transitions of the plant. With the addition
of supervisory places the overall system is given by

Ds =

[

Dp

Dc

]

ms =

[

mp

mc

]

(6)

and every single constraint is transformed to a marking
invariant that corresponds to a place invariant [1] of the
supervised system.

In fact, every marking constraint results in an ad-
ditional place, which enforces a marking invariant to
the closed loop system. The added place acts as a mu-
tual exclusion mechanism such as parallel or sequential
mutual concept introduced in [13]. However, the super-
visory control concept enables to consider some transi-
tions in the process model as uncontrollable. These are
transitions that are either generated by the process it-
self and can not be controlled or must not be blocked
by an external agent due to the safety of other require-
ments. Supervisory control synthesis methods enable
the computation of the supervisor that is maximally
permissive. This means the resulting closed-loop sys-
tem meets the demands about the system behavioural
restrictions, while the supervisor never tries to block an
uncontrollable transition and at the same time does not
restrict the system more than necessary.

IV. IMPLEMENTATION ISSUES

Perhaps the most significant advantage of the Petri
net representation is the straightforward path from the
developed specification models to the industrial imple-
mentation. The discrete control logic is most often
implemented by programmable logic controllers. The
recent IEC 1131.3 standard [4] on programming lan-
guages of industrial logic controllers promotes the use
of Sequential Function Chart (SFC) for the structur-
ing of the control logic. SFC (also referred as Grafcet)
inherited many of its features from the theory of Petri
nets. More precisely, a safe interpreted Petri net can
be defined such that its input-output behaviour is the
same as the input-output behaviour of the SFC [1], [2].

A place in such a Petri net corresponds to a step in
the SFC. Transitions and directed links have the same
meaning in SFC as they have in Petri net. If an in-
put/output interpretation is added to the transitions
and places of the Petri net, we can obtain an equiv-
alent SFC model. There are however two basic differ-
ences between such an interpreted Petri net and a SFC.
The first difference between Petri nets and SFCs is that
the marking of a SFC is Boolean (step is active or in-
active) while the marking of a place in a Petri net can

be any positive integer. For that reason the conversion
of a Petri net to a SFC is only possible when the net
is safe (i.e., for any reachable marking, the marking of
every place is less than or equal to one).

The second difference between Petri nets and SFCs
is that the firing rule of a SFC is different from a Petri
net when there is a conflict. A conflict in a Petri net
describes the situation when some transitions are en-
abled by the marking of the same place. This leads to
a non-deterministic behaviour since there is no rule to
choose which of them will be fired. When such situation
emerges in a SFC the transitions are fired according to
their priorities to ensure the deterministic behaviour.

Now, if a Petri net is such that any pair of transi-
tions in conflict has transition conditions or receptivi-
ties, which can not be true at the same time, the be-
haviour of the net is deterministic. If such a Petri net
is also safe, it is equivalent to a SFC [2]. Its strong
relation to Petri net theory then enables a SFC to be
directly redrawn from a Petri net model and the classi-
cal properties of Petri nets, such as marking invariants,
can be applied also to SFCs.

In the proposed approach a model of the desired
behaviour represents an unambiguous specification of
state transitions in the corresponding control logic. Fol-
lowing the standard we use SFC as a core program-
ming language. As described above, the structure of
the Petri net model can be under certain conditions di-
rectly transformed into the control logic. In our case,
every single specification model is translated into a SFC
that is implemented in a local programmable logic con-
troller.

Transition conditions and step actions are added dur-
ing implementation phase and have to be written in one
of the other standardised languages. It is important to
include safety interlocks in the step actions where nec-
essary, despite the coordination level above.

Similarly as the local control logic the supervisor is
transformed into a sequential function chart. A solution
is proposed which enables a separate implementation of
the supervisor and the local control logic [9]. Special at-
tention was paid to the situation when the supervisor
and the local level control are implemented on differ-
ent controllers and the possible communication delays
must be taken into account. The solution is based on
the assumption that every supervisory place can be in-
terpreted as the mutual exclusion mechanism, such as
in the example in Fig. 2a. Such a mechanism can
be split into several nets, provided certain transitions
are synchronised. Separated nets can be then trans-
formed into separate SFCs, which can be implemented
in distributed controllers. Synchronisation among tran-
sitions in these SFCs is accomplished through binary
synchronisation flags that are shared over the controller
network.

Because of the communication delays that could oc-
cur on the network it can not be guaranteed that tran-
sitions in different controllers fire simultaneously. This
can be solved by defining the firing order of the tran-
sitions. In the cases when the two controllers share
the same resource and the supervisor performs the re-

p B 3

p A 1
t A 1

t A 2

p A 2

p A 3

p B 1
t B 1
p B 2
t B 2

p C 1

P r o c e s s A P r o c e s s BS u p e r v i s o r

s y n c h r o n i z e d
t r a n s i t i o n s

P r o c e s s A P r o c e s s B

p B 3

p A 1
t A 1

t A 2

p A 2

p A 3

p B 1
t B 1
p B 2
t B 2

p C 1

t C B 1
p C B 2
t C B 2

t C A 1

t C A 2

p C A 2

S u p e r v i s o r

S 1

S 2

S 3

S 4

S 5 S 6

S 7

S 8

S 9

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

a) b)

c)

Fig. 2. Supervisor implementation in a distributed environment.

source allocation such as indicated in Fig. 2 the tran-
sition that books the resource must be fired in the su-
pervisor first and only then in the local controller. In
the opposite case the communication delay would al-
low a double booking of the shared resource by the two
controllers.

This is solved as indicated in Fig. 3. Flags Xi are in-
cluded in SFC transition conditions that signalise when
step i in another SFC is active. In addition to these
flags, the priority of the competing transitions in the
supervisory part of the SFC has to be determined to en-
sure deterministic behaviour. This can be fixed through
receptivities of the competing transitions, such as in
Fig. 3 where transition (5) has higher priority than
transition (3), or can be determined on-line by some
higher level control subsystem, e.g. resource planning
or scheduling system.

The proposed solution can be inadequate in certain
situations, e.g. when the step whose activity is inter-
preted as a demand for a shared resource (such as step
S1 in Fig. 3) is the only step in a chart which does not
use a resource. The releasing of the resource performed
through transitions (4) and (6) in the supervisory SFC
in Fig. 3 does not work in this case. This can be solved
by adding a step-transition pair in every branch of the
supervisor as shown in Fig. 4.

The additional transition (3’) fires when the process

P r o c e s s A P r o c e s s BS u p e r v i s o r

S 1

S 2

S 3

S 4

S 5 S 6

S 7

S 8

S 9

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

X 1 R 1 R 7 X 7 R 7

X 1 X 2 X 7 X 8

R 1 X 5 R 7 X 6

X 6X 5

X 1

X 2

X 7

X 8

Fig. 3. Synchronisation between supervisor and local controllers.

P r o c e s s A P r o c e s s BS u p e r v i s o r

S 1

S 2

S 3

S 4

S 5 S 6

S 7

S 8

S 9

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

X 1 R 1 R 7 X 7 R 7

X 2 X 8

R 1 X 5 R 7 X 6

X 6X 5

X 1

X 2

X 7

X 8

S 5 ' S 6 '
(3 ') (5 ')X 1 X 7

Fig. 4. Extended supervisor.

A starts using the resource, i.e. when the step S1 is no
longer active. The inclusion of the condition X1 in the
receptivity of transition (4) is no longer necessary and
there are no problems with releasing the resource.

V. CONTROL OF A MODULAR

PRODUCTION SYSTEM

Although simplified, the modular production system
(Fig. 5) used in the case study incorporates several flex-
ible automation concepts generally found in the area of
manufacturing systems and used in modern production
facilities. These include distributed design of the un-
derlying control system and interaction of several sub-
processes that require coordination among them.

System is divided into five partially independent
working stations that are controlled by separate pro-
grammable logic controllers. For the purpose of coordi-
nation among stations the controllers are connected to
a communication network. This enables them to share
a set of register addresses. One of the controllers is
dedicated as the network master others act as slaves.
Although this makes no difference among controllers
from the user program viewpoint, the network master
also performs the second level supervisory function, i.e.
coordination among working stations, which runs as an
independent program task.

The desired behaviour of every station to be con-
trolled is modelled by a Petri net. A top down syn-
thesis procedure is applied which guarantees the de-

D i s t r i b u t i o n T e s t i n g P r o c e s s i n g H a n d l i n g S t o r a g e

Fig. 5. Modular production system.

p
d1

t
d1

p
d2

t
d2

p
d3

t
d3

t
d4

p
d4

t
d5

p
d5

t
d6

t
d10

p
d6

p
d7

p
d10

t
d7

t
d11

p
d8

p
d11

t
d8

p
d9

t
d9

t
d12

p
d12

t
d13

Fig. 6. Petri net model of the first working station.

TABLE I

Control interpretation of places and transitions

Places
pd1 initial state
pd2 delay (waiting for a workpiece)
pd3 distribution piston moving forward
pd4 manipulator arm moving toward input buffer
pd6 holding the workpiece
pd7 distribution piston moving backward
pd8, pd10 manip. arm moving toward lift
pd9 releasing the workpiece
pd11 buffer empty (waiting for a new workpiece)
pd5, pd12 no operation (linking places)
Transitions
td1 controller in operation
td2 end of delay and input buffer not empty
td3 distribution piston forward (switch closed)
td4 end of delay and input buffer empty
td5 manip. arm at input buffer (switch closed)
td6 distribution piston forward (switch closed)
td7 vacuum on (vacuum switch closed) and distribu-

tion piston back (switch closed)
td8, td11 manip. arm at second station (switch closed)
td9 vacuum off (vacuum switch open)
td10 distribution piston not forward (switch open)
td12 new workpiece detected (optical sensor)
td13 no condition (fires immediately)

rived model has desired properties of liveness, bound-
edness and reversibility. The procedure starts with sim-
ple net and continues by stepwise refinement of places
and/or transitions until the sufficiently detailed model
is obtained. An example of such model is shown in
Fig. 6. The control logic based on the model is then
implemented as a SFC in an IEC 1131.3 compliant pro-
gramming environment. The control implementation of
places and transitions is listed in Table I.

Models of the desired behaviour of the locally con-
trolled system are used as an open-loop model for the
design of the supervisor. In the given case the described
concept was used to synthesise a simple coordinator

that prevents mechanical collisions among parts of the
neighbouring working stations and maintains proper
handling of workpieces travelling from one station to
another. Computed supervisory mechanism is imple-
mented as a set of SFCs in the same programming soft-
ware as the local control logic.

The whole system was practically implemented and
tested. Fig. 7 shows the SFC that maintains the main
operational sequence of the first working station, the
corresponding SFC for the second station is shown in
Fig. 8. The two stations have to be coordinated be-
cause the manipulator arm periodically enters the area
of the lift movement. The SFC of the supervisor that
prevents the potential collisions is shown in Fig. 9. Re-
lated variables are listed in Table II.

VI. CONCLUSIONS

Presented approach can be used in solving various
practical design problems in the area of manufacturing
systems. The complexity of the Petri net models can
be kept manageable due to the distributed design of
the system. The proposed coordination approach min-
imally affects local control logic and can be designed
separately. One of the problems of such a design is that
used supervisory control method generally does not give
a blocking-free supervisor. The supervised system may
therefore include deadlocks. An analysis of a result-
ing closed loop Petri net model has to be performed
and system eventually has to be modified to avoid such
situations. A deadlock free coordination design is one

T R U E

S D 3 & A c t A l l o c D _ 1 N O T S D 3 & A c t A l l o c D _ 1

I n i t i a l

W a i t 1

D i s t r i b u t i o n p i s t o n f o r w .

M a n i p u l a t o rt o t h e l e f t

N O P 1

H o l d D i s t r i b u t i o n p i s t o n b a c k

T r a n s p o r t

R e l e a s e

N O P 2

M a n i p u l a t o r t o t h e r i g h t

W a i t 2

D i s t r i b _ o n

T D 1 & S D 1

S D 3

T D 1 & N O T S D 1

S D 2 & S D 4

S D 6

S D 4

S D 5

S D 6

S D 1

A c t N O P 1 _ D

Fig. 7. Control implementation - distribution station.

T R U E

T T 3 & H o k & A c t A l l o c T _ 2

I n i t i a l

R e c o g n i t i o n

B l a c k

L i f t u p

N O P

S T 6 & A c t A l l o c T _ 1

T T 1 & N O T S T 5 & N O T S T 7

T R U E

T T 1 & N O T S T 5 & S T 7

S T 1 & S T 3

S T 2

T T 4

S T 3

A c t I n i t i a l _ T

S e n s o r d o w n
S T 4

H e i g h t m e a s u r e m e n t
T T 2

T T 1 & S T 5 & S T 7
R e d M e t a l

T T 1 & S T 5 & N O T S T 7
E j e c t i o n 3

T T 4

E j e c t p i s t o nb a c k 3

T R U E T R U E

S T 3

S e n s o r u p

T T 3 & N O T H o k
E j e c t i o n 1

T T 4
L i f t d o w n 2

E j e c t p i s t o nb a c k 1L i f t d o w n 1 E j e c t i o n 2

S T 1

E j e c t p i s t o nb a c k 2

A c t N O P _ T

Fig. 8. Control implementation - testing station.

R e s o u r c ef r e e

D e m a n d D D e m a n d T

A l l o c a t e d D A l l o c a t e d T
N O T A c t N O P 1 _ D

A c t I n i t i a l _ T O R A c t N O P _ T

A c t N O P 1 _ D & N O T S T 6 A c t I n i t i a l _ T & S K 6

N O T A c t I n i t i a l _ T

A c t N O P 1 _ D

A c t A l l o c D _ 1 A c t A l l o c T _ 1

Fig. 9. Control implementation - supervisor 1.

of the issues for the further work. Another important
drawback is the difficult translation of the coordination
requirements into behavioural restrictions suitable for
supervisory control synthesis. Only part of these re-
quirements can be fulfilled by such a supervisor while
some tasks still have to be programmed intuitively. A
possible inclusion of these requirements in the scope of
the presented approach is also one of the further re-
search issues.

References

[1] R. David and H. Alla, ”Petri Nets for Modeling of Dynamic
Systems - A Survey”, Automatica, vol. 30, no. 2, 1994, pp.
175-202.

TABLE II

Variables used in sequential function charts

Distribution station:
SD1 Sensor - workpiece present
SD2 Distribution piston position switch - back
SD3 Distribution piston posit. switch - front
SD4 Vacuum sensor
SD5 Manipulator position switch - left
SD6 Manipulator position switch - right
Distrib on Global variable - station is working
TD1 Time delay run out
ActNOP1 D Network variable - step NOP1 in the distri-

bution control program active
ActAllocD 1 Network variable - allocation step in the su-

pervisor 1 active
Testing station:
ST1 Lift position switch - down
ST2 Lift position switch - up
ST3 Eject piston position switch - in
ST4 Height sensor position switch - down
ST5 Inductive sensor at lift platform
ST6 Capacitive sensor at lift platform
ST7 Optical sensor at lift platform
Hok Result of the height measurement
TT1, TT2 Time delay run out
TT3, TT4 Time delay run out
ActInitial T Network variable - step Initial in the testing

control program active
ActNOP T Network variable - step NOP in the testing

control program active
ActAllocT 1 Network variable - allocation step in the su-

pervisor 1 active
ActAllocT 2 Network variable - allocation step in the su-

pervisor 2 active (coordinates testing and pro-
cessing stations; not shown here)

[2] R. David, ”Grafcet: A Powerful Tool for Specification of
Logic Controllers”, IEEE Trans. on Control Systems Tech-
nology, vol. 3, no. 3, 1995, pp. 253-268.

[3] L. E. Holloway, B. H. Krogh and A. Giua, ”A Survey of Petri
Net Methods for Controlled Discrete Event Systems”, Dis-
crete Event Dynamics Systems: Theory and Applications,
vol. 7, 1997, pp. 151-190.

[4] IEC, International Electrotechnical Commission, ”Pro-
grammable Controllers - Part 3: Programming Languages”,
publication 1131.3, 1993.

[5] M. D. Jeng and F. DiCesare, ”A Review of Synthesis Tech-
niques for Petri Nets with Applications to Automated Man-
ufacturing Systems”, IEEE Trans. on Systems, Man, and
Cybernetics, vol. 23, no. 1, 1993, pp. 301-312.

[6] B. H. Krogh and L. E. Holloway, ”Synthesis of Feedback
Control Logic for Discrete Manufacturing Systems”, Auto-
matica, vol. 27, no. 4, 1991, pp. 641-651.

[7] J. O. Moody and P. J. Antsaklis, ”Supervisory Control of
Petri Nets with Uncontrollable/Unobservable Transitions”,
Tech. Rep. ISIS-96-004, University of Notre Dame, 1996.

[8] T. Murata, ”Petri Nets: Properties, Analysis and Applica-
tions”, Proc. IEEE, vol. 77, no. 4, 1989, pp. 541-580.

[9] G. Mušič and D. Matko, ”Petri Net Based Supervisory Con-
trol of Flexible Batch Plants”, in Prepr. 8th IFAC Symp. on
Large Scale Systems: Theory & Application, vol. II, Rio Pa-
tras, 1998, pp. 989-994.

[10] J. M. Proth and X. Xie, Petri Nets, A Tool for Design
and Management of Manufacturing Systems, Wiley (UK),
Chichester, 1996.

[11] P. J. Ramadge and W. M. Wonham, ”Supervisory Control
of a Class of Discrete Event Processes”, SIAM J. Control
and Optimization, vol. 25, no. 1, 1987, pp. 206-230.

[12] K. Yamalidou, J. Moody, M. Lemmon and P. Antsaklis,
”Feedback Control of Petri Nets Based on Place Invariants”,
Automatica, vol. 32, no. 1, 1996, pp. 15-28.

[13] M. C. Zhou and F. DiCesare, ”Parallel and Sequential Mu-
tual Exclusions for Petri Net Modeling of Manufacturing
Systems with Shared Resources”, IEEE Trans. on Robotics
and Automation, vol. 7, no. 4, 1991, pp. 515-527.

[14] M. Zhou, F. DiCesare and A. A. Desrochers, ”A Hybrid
Methodology for Synthesis of Petri Net Models for Manufac-
turing Systems”, IEEE Trans. on Robotics and Automation,
vol. 8, no. 3, 1992, pp. 350-361.

	Source: Proceedings of the IEEE International Symposium on Industrial Electronics - ISIE '99, Bled, Slovenia, July 12 - 16, 1999, vol. 3, pp. 1383-1388.

